Human heterochromatin protein 1 isoforms HP1(Hsalpha) and HP1(Hsbeta) interfere with hTERT-telomere interactions and correlate with changes in cell growth and response to ionizing radiation.
نویسندگان
چکیده
Telomeres are associated with the nuclear matrix and are thought to be heterochromatic. We show here that in human cells the overexpression of green fluorescent protein-tagged heterochromatin protein 1 (GFP-HP1) or nontagged HP1 isoforms HP1(Hsalpha) or HP1(Hsbeta), but not HP1(Hsgamma), results in decreased association of a catalytic unit of telomerase (hTERT) with telomeres. However, reduction of the G overhangs and overall telomere sizes was found in cells overexpressing any of these three proteins. Cells overexpressing HP1(Hsalpha) or HP1(Hsbeta) also display a higher frequency of chromosome end-to-end associations and spontaneous chromosomal damage than the parental cells. None of these effects were observed in cells expressing mutants of GFP-DeltaHP1(Hsalpha), GFP-DeltaHP1(Hsbeta), or GFP-DeltaHP1(Hsgamma) that had their chromodomains deleted. An increase in the cell population doubling time and higher sensitivity to cell killing by ionizing radiation (IR) treatment was also observed for cells overexpressing HP1(Hsalpha) or HP1(Hsbeta). In contrast, cells expressing mutant GFP-DeltaHP1(Hsalpha) or GFP-DeltaHP1(Hsbeta) showed a decrease in population doubling time and decreased sensitivity to IR compared to the parental cells. The effects on cell doubling times were paralleled by effects on tumorigenicity in mice: overexpression of HP1(Hsalpha) or HP1(Hsbeta) suppressed tumorigenicity, whereas expression of mutant HP1(Hsalpha) or HP1(Hsbeta) did not. Collectively, the results show that human cells are exquisitely sensitive to the amount of HP1(Hsalpha) or HP1(Hsbeta) present, as their overexpression influences telomere stability, population doubling time, radioresistance, and tumorigenicity in a mouse xenograft model. In addition, the isoform-specific effects on telomeres reinforce the notion that telomeres are in a heterochromatinized state.
منابع مشابه
Heterochromatin protein 1 is recruited to various types of DNA damage
Heterochromatin protein 1 (HP1) family members are chromatin-associated proteins involved in transcription, replication, and chromatin organization. We show that HP1 isoforms HP1-alpha, HP1-beta, and HP1-gamma are recruited to ultraviolet (UV)-induced DNA damage and double-strand breaks (DSBs) in human cells. This response to DNA damage requires the chromo shadow domain of HP1 and is independen...
متن کاملHP1-Mediated Formation of Alternative Lengthening of Telomeres-Associated PML Bodies Requires HIRA but Not ASF1a
Approximately 10% of cancers use recombination-mediated Alternative Lengthening of Telomeres (ALT) instead of telomerase to prevent telomere shortening. A characteristic of cells that utilize ALT is the presence of ALT-associated PML nuclear bodies (APBs) containing (TTAGGG)n DNA, telomere binding proteins, DNA recombination proteins, and heterochromatin protein 1 (HP1). The function of APBs is...
متن کاملHeterochromatin protein 1 (HP1) is associated with induced gene expression in Drosophila euchromatin
Heterochromatin protein 1 (HP1) is a conserved nonhistone chromosomal protein, which is involved in heterochromatin formation and gene silencing in many organisms. In addition, it has been shown that HP1 is also involved in telomere capping in Drosophila. Here, we show a novel striking feature of this protein demonstrating its involvement in the activation of several euchromatic genes in Drosop...
متن کاملHigh- and low-mobility populations of HP1 in heterochromatin of mammalian cells.
Heterochromatin protein 1 (HP1) is a conserved nonhistone chromosomal protein with functions in euchromatin and heterochromatin. Here we investigated the diffusional behaviors of HP1 isoforms in mammalian cells. Using fluorescence correlation spectroscopy (FCS) and fluorescence recovery after photobleaching (FRAP) we found that in interphase cells most HP1 molecules (50-80%) are highly mobile (...
متن کاملHP1 regulates the localization of FANCJ at sites of DNA double‐strand breaks
The breast and ovarian cancer predisposition protein BRCA1 forms three mutually exclusive complexes with Fanconi anemia group J protein (FANCJ, also called BACH1 or BRIP1), CtIP, and Abraxas/RAP80 through its BRCA1 C terminus (BRCT) domains, while its RING domain binds to BRCA1-associated RING domain 1 (BARD1). We recently found that the interaction between heterochromatin protein 1 (HP1) and B...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular and cellular biology
دوره 23 22 شماره
صفحات -
تاریخ انتشار 2003